Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658525

RESUMO

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Assuntos
Genoma Viral , Vírus Gigantes , Naegleria , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/fisiologia , Naegleria/genética , Naegleria/virologia , Naegleria fowleri/genética , Naegleria fowleri/isolamento & purificação , Filogenia , Humanos
2.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557755

RESUMO

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Assuntos
Clorófitas , Vírus Gigantes , Vírus Gigantes/genética , Filogenia , Genoma Viral/genética , Clorófitas/genética , Metagenômica , Bactérias/genética
3.
OMICS ; 28(4): 170-181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621149

RESUMO

With their unusually large genome and particle sizes, giant viruses (GVs) defy the conventional definition of viruses. Although most GVs isolated infect unicellular protozoans, such as amoeba, studies in the last decade have established their much wider prevalence infecting most eukaryotic supergroups and some giant viral families with the potential to be human pathogens. Their complexity, almost autonomous life cycle, and enigmatic evolution necessitate the study of GVs. The accurate assessment of GV proteome is a veritable challenge. We have compared the coverage of global protein identification using different methods for GVs isolated in Mumbai, Mimivirus Bombay (MVB), Powai Lake Megavirus (PLMV), and Kurlavirus (KV), along with two previously studied GVs, Acanthamoeba polyphaga Mimivirus (APMV) and Marseillevirus (MV). Our study shows that the simultaneous use of in-gel and in-solution digestion methods can significantly increase the coverage of protein identification in the global proteome analysis of purified GV particles. Combining the two methods of analyses, we identified an additional 72 proteins in APMV and 114 in MV compared with what have been previously reported. Similarly, proteomes of MVB, PLMV, and KV were analyzed, and a total of 242 proteins in MVB, 287 proteins in PLMV, and 174 proteins in KV were identified. Our results suggest that a combined methodology of in-gel and in-solution methods is more efficient and opens up new avenues for innovation in global proteome analysis of GVs. Future planetary health research on GVs can benefit from consideration of a broader range of proteomics methodologies as illustrated by the present study.


Assuntos
Vírus Gigantes , Proteoma , Proteômica , Proteômica/métodos , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Proteínas Virais/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(11): e2314606121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446847

RESUMO

Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.


Assuntos
Vírus Gigantes , Estramenópilas , Viroses , Humanos , Virófagos , Vírus Gigantes/genética , Estramenópilas/genética , Antivirais
5.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373822

RESUMO

AIM: The aim of the study was to evaluate the efficiency of mimivirus as a potential therapeutic and prophylactic tool against Acanthamoeba castellanii, the etiological agent of Acanthamoeba keratitis, a progressive corneal infection, that is commonly associated with the use of contact lenses and can lead to blindness if not properly treated. METHODS AND RESULTS: Mimivirus particles were tested in different multiplicity of infection, along with commercial multipurpose contact lenses' solutions, aiming to assess their ability to prevent encystment and excystment of A. castellanii. Solutions were evaluated for their amoebicidal potential and cytotoxicity in MDCK cells, as well as their effectiveness in preventing A. castellanii damage in Madin-Darby canine kidney (MDCK) cells. Results indicated that mimivirus was able to inhibit the formation of A. castellanii cysts, even in the presence of Neff encystment solution. Mimivirus also showed greater effectiveness in controlling A. castellanii excystment compared to commercial solutions. Additionally, mimivirus solution was more effective in preventing damage caused by A. castellanii, presented greater amoebicidal activity, and were less cytotoxic to MDCK cells than commercial MPS. CONCLUSIONS: Mimivirus demonstrates a greater ability to inhibit A. castellanii encystment and excystment compared to commercial multipurpose contact lens solutions. Additionally, mimivirus is less toxic to MDCK cells than those commercial solutions. New studies utilizing in vivo models will be crucial for confirming safety and efficacy parameters.


Assuntos
Amebíase , Vírus Gigantes , Animais , Cães , Biotecnologia
6.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38401169

RESUMO

Photosynthetic cryptophytes are ubiquitous protists that are major participants in the freshwater phytoplankton bloom at the onset of spring. Mortality due to change in environmental conditions and grazing have been recognized as key factors contributing to bloom collapse. In contrast, the role of viral outbreaks as factors terminating phytoplankton blooms remains unknown from freshwaters. Here, we isolated and characterized a cryptophyte virus contributing to the annual collapse of a natural cryptophyte spring bloom population. This viral isolate is also representative for a clade of abundant giant viruses (phylum Nucleocytoviricota) found in freshwaters all over the world.


Assuntos
Vírus Gigantes , Vírus , Humanos , Fitoplâncton , Criptófitas/genética , Eucariotos
7.
EMBO J ; 43(3): 462-480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216735

RESUMO

Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.


Assuntos
Difosfatos , Vírus Gigantes , Difosfatos/metabolismo , Vírus Gigantes/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nat Protoc ; 19(1): 3-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964008

RESUMO

Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR-Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Humanos , Acanthamoeba castellanii/genética
9.
J Virol ; 97(12): e0130923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092658

RESUMO

IMPORTANCE: Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.


Assuntos
Evolução Molecular , Duplicação Gênica , Vírus Gigantes , Genoma Viral , Vírus Gigantes/genética , Filogenia
10.
Exp Biol Med (Maywood) ; 248(22): 2045-2052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955170

RESUMO

The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.


Assuntos
Vírus Gigantes , Mimiviridae , Vírus , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Vírus Gigantes/genética , Mimiviridae/genética
11.
J Am Chem Soc ; 145(48): 25966-25970, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010834

RESUMO

Giant viruses are nonstandard viruses with large particles and genomes. While previous studies have shown that their genomes contain various sequences of interest, their genes related specifically to natural product biosynthesis remain unexplored. Here we analyze the function and structure of a terpene synthase encoded by the gene of a giant virus. The enzyme is phylogenetically separated from the terpene synthases of cellular organisms; however, heterologous gene expression revealed that it still functions as a terpene synthase and produces a cyclic terpene from a farnesyl diphosphate precursor. Crystallographic analysis revealed its protein structure, which is relatively compact but retains essential motifs of the terpene synthases. We thus suggest that like cellular organisms, giant viruses produce and utilize natural products for their ecological strategies.


Assuntos
Alquil e Aril Transferases , Vírus Gigantes , Vírus Gigantes/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Genoma Viral
12.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950899

RESUMO

Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.


Assuntos
Genoma Viral , Vírus Gigantes , Filogenia , Genômica , Vírus Gigantes/genética , Vírion/genética , Evolução Molecular
13.
Nat Commun ; 14(1): 6233, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828003

RESUMO

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/genética , Genoma Viral/genética , Ecossistema , Oceanos e Mares , Filogenia , Vírus de DNA/genética , Genômica , Vírus/genética , Eucariotos/genética
14.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904060

RESUMO

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Assuntos
Vírus Gigantes , Mimiviridae , Humanos , Vírus Gigantes/genética , Vírus de DNA/genética , Mimiviridae/genética , Genoma Viral , Vírion
15.
Sci Adv ; 9(41): eadf7971, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824628

RESUMO

Giant viruses infect many unicellular eukaryotes, including algae that form massive oceanic blooms. Despite the major impact of viruses on the marine ecosystem, the ability to quantify and assess active viral infection in nature remains a major challenge. We applied single-cell RNA sequencing, to profile virus and host transcriptomes of 12,000 single algal cells from a coccolithophore bloom. Viral infection was detected already at early exponential bloom phase, negatively correlating with the bloom intensity. A consistent percent of infected coccolithophores displayed the early phase of viral replication for several consecutive days, indicating a daily turnover and continuous virocell-associated metabolite production, potentially affecting the surrounding microbiome. Linking single-cell infection state to host physiology revealed that infected cells remained calcified even in the late infection stage. These findings stress the importance of studying host-virus dynamics in natural populations, at single-cell resolution, to better understand virus life cycle and its impact on microbial food webs.


Assuntos
Vírus Gigantes , Viroses , Humanos , Vírus Gigantes/genética , Ecossistema , Transcriptoma , Eutrofização
16.
FEMS Microbiol Rev ; 47(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37740576

RESUMO

The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Filogenia , Genoma Viral/genética , Evolução Biológica , Vírus/genética
17.
Environ Microbiol ; 25(11): 2621-2635, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37543720

RESUMO

Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.


Assuntos
Vírus Gigantes , Vírus Gigantes/genética , Genômica , Análise de Sequência de DNA , Metagenoma , Sequenciamento de Nucleotídeos em Larga Escala
18.
Viruses ; 15(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632100

RESUMO

Our perception of viruses has been drastically evolving since the inception of the field of virology over a century ago. In particular, the discovery of giant viruses from the Nucleocytoviricota phylum marked a pivotal moment. Their previously concealed diversity and abundance unearthed an unprecedented complexity in the virus world, a complexity that called for new definitions and concepts. These giant viruses underscore the intricate interactions that unfold over time between viruses and their hosts, and are themselves suspected to have played a significant role as a driving force in the evolution of eukaryotes since the dawn of this cellular domain. Whether they possess exceptional relationships with their hosts or whether they unveil the actual depths of evolutionary connections between viruses and cells otherwise hidden in smaller viruses, the attraction giant viruses exert on the scientific community and beyond continues to grow. Yet, they still hold surprises. Indeed, the recent identification of mirusviruses connects giant viruses to herpesviruses, each belonging to distinct viral realms. This discovery substantially broadens the evolutionary landscape of Nucleocytoviricota. Undoubtedly, the years to come will reveal their share of surprises.


Assuntos
Vírus Gigantes , Mimiviridae , Mimiviridae/genética , Eucariotos , Vírus Gigantes/genética
19.
J Virol ; 97(7): e0041123, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395647

RESUMO

New representatives of the phylum Nucleocytoviricota have been rapidly described in the last decade. Despite this, not all viruses of this phylum are allocated to recognized taxonomic families, as is the case for orpheovirus, pithovirus, and cedratvirus, which form the proposed family Pithoviridae. In this study, we performed comprehensive comparative genomic analyses of 8 pithovirus-like isolates, aiming to understand their common traits and evolutionary history. Structural and functional genome annotation was performed de novo for all the viruses, which served as a reference for pangenome construction. The synteny analysis showed substantial differences in genome organization between these viruses, with very few and short syntenic blocks shared between orpheovirus and its relatives. It was possible to observe an open pangenome with a significant increase in the slope when orpheovirus was added, alongside a decrease in the core genome. Network analysis placed orpheovirus as a distant and major hub with a large fraction of unique clusters of orthologs, indicating a distant relationship between this virus and its relatives, with only a few shared genes. Additionally, phylogenetic analyses of strict core genes shared with other viruses of the phylum reinforced the divergence of orpheovirus from pithoviruses and cedratviruses. Altogether, our results indicate that although pithovirus-like isolates share common features, this group of ovoid-shaped giant viruses presents substantial differences in gene contents, genomic architectures, and the phylogenetic history of several core genes. Our data indicate that orpheovirus is an evolutionarily divergent viral entity, suggesting its allocation to a different viral family, Orpheoviridae. IMPORTANCE Giant viruses that infect amoebae form a monophyletic group named the phylum Nucleocytoviricota. Despite being genomically and morphologically very diverse, the taxonomic categories of some clades that form this phylum are not yet well established. With advances in isolation techniques, the speed at which new giant viruses are described has increased, escalating the need to establish criteria to define the emerging viral taxa. In this work, we performed a comparative genomic analysis of representatives of the putative family Pithoviridae. Based on the dissimilarity of orpheovirus from the other viruses of this putative family, we propose that orpheovirus be considered a member of an independent family, Orpheoviridae, and suggest criteria to demarcate families consisting of ovoid-shaped giant viruses.


Assuntos
Genoma Viral , Vírus Gigantes , Filogenia , Humanos , Genoma Viral/genética , Genômica , Vírus Gigantes/classificação , Vírus Gigantes/genética , Variação Genética , Evolução Molecular
20.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279941

RESUMO

The diverse GTPases of the dynamin superfamily play various roles in the cell, as exemplified by the dynamin-related proteins (DRPs) Mgm1 and Opa1, which remodel the mitochondrial inner membrane in fungi and metazoans, respectively. Via an exhaustive search of genomic and metagenomic databases, we found previously unknown DRP types occurring in diverse eukaryotes and giant viruses (phylum Nucleocytoviricota). One novel DRP clade, termed MidX, combined hitherto uncharacterized proteins from giant viruses and six distantly related eukaryote taxa (Stramenopiles, Telonemia, Picozoa, Amoebozoa, Apusomonadida, and Choanoflagellata). MidX stood out because it was not only predicted to be mitochondria-targeted but also to assume a tertiary structure not observed in other DRPs before. To understand how MidX affects mitochondria, we exogenously expressed MidX from Hyperionvirus in the kinetoplastid Trypanosoma brucei, which lacks Mgm1 or Opa1 orthologs. MidX massively affected mitochondrial morphology from inside the matrix, where it closely associates with the inner membrane. This unprecedented mode of action contrasts to those of Mgm1 and Opa1, which mediate inner membrane remodeling in the intermembrane space. We speculate that MidX was acquired in Nucleocytoviricota evolution by horizontal gene transfer from eukaryotes and is used by giant viruses to remodel host mitochondria during infection. MidX's unique structure may be an adaptation for reshaping mitochondria from the inside. Finally, Mgm1 forms a sister group to MidX and not Opa1 in our phylogenetic analysis, throwing into question the long-presumed homology of these DRPs with similar roles in sister lineages.


Assuntos
Vírus Gigantes , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Filogenia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...